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The flow field near the centre of a rolled-up 
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Most of the existing methods for calculating the inviscid flow past a delta wing 
with leading-edge vortices are based on slender-body theory. When these vortices 
are represented by rolled-up vortex sheets in an otherwise irrotational flow, some 
of the assumptions of slender-body theory are violated near the centres of the 
spirals. The aim of the present report is to describe for the vortex core an alterna- 
tive method in which only the assumption of a conical velocity field is made. An 
asymptotic solution valid near the centre of a rolled-up vortex sheet is derived 
for incompressible flow. Xurther asymptotic solutions are determined for two- 
dimensional flow fields with vortex sheets which vary with time in such a manner 
that the sheets remain similar in shape. A particular two-dimensional flow 
corresponds to the slender theory approximation for conical sheets. 

1. Introduction 
Observation shows that, when a slender delta wing is placed at incidence in a 

stream, the fluid separates from the surface along lines near the leading edges. 
Shear layers, springing from these lines, form in the fluid and roll up (in opposite 
senses on the two halves of the wing) into spiral vortices which lie above the wing 
and inboard of the leading edges. Although viscous effects play some part in this 
flow, mainly in determining the position of the separation lines and in the inner 
part of the core, various attempts (Legendre 1952; Mangler & Smith 1959; 
Smith 1966a, b)  have been made to calculate this flow on the basis of an inviscid 
flow model, in particular for a wing with sharp leading edges where the position 
of the separation lines is known. 

The theory developed by Legendre (1952), Mangler & Smith (1959), Smith 
(1966a) is based on slender-body theory. However, in the vortex core velocities 
have been measured (see e.g. Earnshaw 1961) which differ considerably from those 
of the main stream which implies that it is doubtful whether slender theory is 
applicable near the centre of the core. We therefore aim in this paper to examine 
the flow near the centre of a coiled vortex sheet by a method which avoids the 
assumption of small perturbations. 

Experiments suggest that a delta wing of aspect ratio less than two produces a 
vortex sheet which even in subsonic flow is approximately conical over the for- 
ward part of the wing, away from the trailing edge and outside the immediate 
neighbourhood of the apex. Therefore, it was decided to consider the flow as 
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conical, i.e. the velocity components are assumed to be constant along rays from 
the apex of the delta wing. 

In  the present paper we consider only a narrow region around the vortex 
core and derive an asymptotic expansion of the velocity field near the centre, 
based on conical incompressible flow. We avoid thus the difficulties? which 
would arise if one were to try to calculate the entire flow field past a delta wing 
by conical incompressible theory. 

We further derive an asymptotic expansion for the velocity field near the 
centre of a conical vortex sheet when the assumptions of slender theory are made. 
The two results will be compared to show the consequences of the slenderness 
assumption. The equations derived by slender theory for conical sheets are the 
same as for the two-dimensional flow field of a vortex sheet which grows linearly 
with time. This is a special case of the two-dimensional flow fields of endless 
rolled-up vortex sheets which vary with time such that their shapes remain 
similar. A certain family of two-dimensional similar vortex sheets which grow 
with time has already been investigated by Prandtl (1922). Another family, 
including the one with linear growth, is considered in this paper. 

We ignore viscous effects and assume that the vorticity is concentrated on a 
thin sheet so that the flow between the turns of the sheet is irrotational. The task 
is then to find solutions of the equation for the velocity potential which satisfy 
the boundary conditions at  a free vortex sheet. 

We attack the problem by introducing two stream functions and transforming 
to co-ordinates X ,  Y such that the two faces of the vortex sheet become lines 
Y = const., say Y = 0 and Y = y. The problem is then to solve three non-linear 
first-order partial differential equations subject to the boundary conditions at  
Y = 0 and Y = y.  We derive only the leading terms of formal asymptotic 
expansions in terms of the distance from the centre of the sheet. The conver- 
gence of these expansions is not investigated, nor are the solutions they represent 
necessarily unique. The conical and the time-dependent problems are treated 
separately. 

2. Conical vortex sheets 
2.1. General equations 

We investigate the flow field near the core of a rolled-up conical vortex sheet. For 
steady flows the sheet must be a stream surface, which means that the velocity 
vector is tangential to the sheet. We assume constant total head for the core 
region. Then the condition that the sheet cannot sustain a pressure difference 
between its two faces requires that the magnitude of the velocity is the same on 
opposite faces of the sheet, but the directions of the velocity vectors may differ. 

The velocity field must satisfy the continuity equation. We ignore compressi- 

t Germain (1955) has shown that the assumption of a wholly conical incompressible 
flow must lead to the existence of singularities in the flow field outside the wing and the 
vortex sheets originating a t  the wing; as a consequence the solution is not uniquely 
defined. 
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bility effects, then the continuity equation can be written in spherical polar 
co-ordinates (R, $, 8 (see figure 1)) as 

a a a 
alC. ae a (R2% sin $) + - (Rv$ sin $) + - (Rv,) = 0. 

This equation is satisfied automatically by the velocity components which are 
derived from any pair of functions Y,(R, $, 19) and Y2(R,  $, 8)  by means of the 
following equations : 

It follows from ( 2 )  to (4) that 

so that Y, and Y2  are constant along streamlines. 
There is some freedom in the choice of stream functions Y, and Y ,  for a given 

three-dimensional flow. We make use of this to choose them for the conical prob- 
lem so that 

Yl = R2f($, 61, (5) 

y 2  = S(P,8). (6) 

q($, 8) = const. represents the intersection of the conical stream surfaces with 
the sphere R = 1. The vortex sheet is thus represented by a curve g($, 8) = const. 

From ( 2 )  to (6) we obtain the following relations between the velocity compo- 
nents and the functions f and g: 

The subscripts to v represent the velocity components; subscripts to all other 
letters denote partial derivatives. 

Since we assume that we are dealing with a potential flow, a function @(R, $, 8)  
exists such that 

aa, 
V R = a '  

"$=%@, 
1 a@ 

I a@ v, = -7 - R sin $ 80 ' 
12-2 
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For conical flow, the potential function is of the form 

0 = W(@,8) 

vy? = &3 

and vR = $ 3  

1 
sin @ 

V O  = 7 $0. 

We introduce the variable 
t = -log tan &@, 

i.e. 

sin $ cosh 6 = 1. 

With t and 8 as the independent variables we obtain from (7) to (13) three partial 
differential equations for q5, f and g: 

In  order to obtain relatively simple equations for the boundary conditions 
at the vortex sheet, we introduce new independent variables X, Y so that 

e = e(x, Y ) ,  

t =  x 
Then 

Now we choose 

so that 

The three equations (14) to (16) take the form 

OF$ = -cosh’Xf,, 

6F-X = 2 f P +  (e,>’I, 
(6F = ZP,. 

We note that this sytem of differential equations is equivalent to equations (14) 
to (16) if and only if 8, is neither zero nor infinite. This condition is equivalent 
to the statement that no conical stream surface is either tangential or normal to 
a circular cone @ = const. In this way the range of possible solutions is restricted. 
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By the transformation of the $, 0 variables to the X ,  Y variables, the region 
between the turns of the spiral vortex sheet (projected on the unit sphere R = 1) 
is mapped on a strip 0 < Y < y in the (X, Y)-plane so that the lines Y = const. 
correspond to the projections of the streamlines on the unit sphere, with Y = 0 
and Y = y corresponding to the two faces of the sheet (see figure 1). The lines 

FIGURE 1. Notation. 

X = const. correspond to the projections of the cones $ = const. We consider 
the special case where 9 = 0,  i.e. <+coy represents the centre of the vortex sheet; 
then the vortex core, $ < $,, say, is represented by the semi-infinite strip 
X > -log tan +$o, 0 < Y < y. The region ABCD in the (X, Y)-plane is mapped 
on the region ABCD in the ($, 8)-plane, with the straight line BD representing a 
circle $ = const., and the curves A D  and BC representing lines 8 = const. For 
two points B and B on either side of the vortex sheet, [ = X has the same value 
but the angle 6' differs by 2n. The geometric boundary condition at the sheet 
reads therefore 

_ _ _ _  

AO(X) 8 ( X ,  7) - O(X, 0) = - 27~. (20) 

When this condition is satisfied, then we obtain a one-to-one mapping between 
the ($, 6') and the ( X ,  Y)-planes. 

For the velocity components we obtain the equations: 

O R  = $2 (21) 

4 (22) 1 + (8,)s x, 
1 

~~=-cosh [$~=-coshX- - -  
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The magnitude J' of the velocity is given by 
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v 2  = v&+v$+v; 

= $2 + cosh2 X 
1 

( $ X Y *  
1 + 

The pressure condition, A P ( X )  = 0, leads thus to the condition 

Since it follows from equation (20) that As, = 0,  we may replace this by 

2.2. Derivation of an asymptotic expansion for the vebcity JieZd 

We intend to obtain an asymptotic solution of the equations (17) to (19) which 
satisfies the conditions (20) and (24) for the inner part of the vortex core, i.e. 
for small @ or large X. The presence of the term cosh X in equations (17) and (24) 
suggests that we try to obtain an asymptotic expansion of a solution in powers 
of ex.  We therefore seek a solution in which the functions O(X, Y ) ,  $ ( X ,  Y )  and 
f ( X ,  Y )  for large X are expressed as series in ex:  

19 = B,(X, Y )  ex + 8,(X, Y )  + 02(X,  Y )  e-x + . . ., 
$ = $,(X, Y )  + $,(X, Y )  e-x + . . ., 

f = f o ( X ,  Y )  e-2x + f , (X ,  Y )  e-3x + . . . . 

(25 )  

(26) 

(27 )  

We assume that the coefficients and their first derivatives are bounded for large 
X or tend to infinity like Xm. This excludes such functions as sin ex. 

It follows from equations (17) and (18) that 

This equation together with the assumptions about the coefficients in the 
series (26) and (27) require that the series for O begins with 8,(X, Y)eX. The 
boundary condition (20) requires that O0(X, 0 )  = 8,(X, y ) .  This and the assump- 
tion that 8, must not vanish for finite X and 0 < Y < y are satisfied if So is 
independent of Y .  

We satisfy the boundary condition if 

( 2 8 )  B,(X, Y )  = -2r-+h,(X)-f 

and B,(X, 0 )  = B,(X, y )  for n + 1. (29) 

Y 

Y 

From equations (18) and (19) it follows that 4, is a function of X only and that 
$ly does not vanish identically if $ox does not vanish identically. It follows from 

t There exists a multitude of functions 0,(X, Y )  which satisfy the conditions. The 
particular choice in equation (28) has no influence on the velocity potential when this is 
expressed in terms of $ and 0. 
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equation (17) that f(X, Y )  behaves like e-2x if + ( X ,  Y )  behaves like an algebraic 
function. 

To determine the functions Bo(X),  h , (X) ,  8 , (X ,  Y ) ,  ... $o(X) ,  $ l ( X ,  Y ) ,  ... 
we insert the expansions (25) to (27) into the differential equations (17) to (19) 
and the boundary condition (24) and consider in each equation the leading terms. 
Then the following set of equations is obtained: 

2fo(Bo + 00x1 = + l W  

4(e0 + e 0 A 2 W + 1  = +o&91 - AAX) .  

It can be shown that these equations are satisfied by 

f - - - C 2 ( X + 6 + 4 ) ,  4n 

Y 0 -  

where C is a non-zero constant, 6 is an arbitrary constant, and ho is a constant 
related to the origin of the &scale. It can be shown that, with the assumptions 
made about the coefficients in equations (25) to (27), the solution is unique. 

To determine the function g l (X)  above and hl (X)  in (28)  we consider in the 
differential equations (17) to (19) and in the boundary condition (24) the terms 
which are one order smaller than the leading terms. This procedure leads to the 
following set of equations: 

P ( X )  = ( X + 6 + * ) 4  (30) 

877 4n 

Y Y  
fix - 3f1 = - 2C2(2F2- 1)82p + - (- - C2F Y +gl) , 

fl = 2 ~ 2 ~ 2 8 , ~  - 
Y 

f i _ 8 n C 2 $ 7 2 1 =  dh 
F y d X  Qf2y' 

AB, = 0, 

+nC2 ( 4 F 2 + k ) ]  = 0. 
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It can be shown that this set of equations is uniquely satisfied by 
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g, = 277C2F, 

h, = 71, 

fi = T C  an- 2F(2F2+ 1 )  (7 Y -n), 

2 6F2+1  271 
02 = ~ ( 7  Y-n-) +h, (X) .  

To determine the functions g2(X)  and h,(X),  we have again to go back to the 
differential equations and the boundary conditions and solve the set of equations 
derived by considering the terms of the next lower order. After some lengthy 
calculations we obtain the following solution for g2(X)  and h 2 ( X ) :  

m e-t 
where ei(h) = JA 

1 3 .J?T h2 = -eFzerfc(F) 
2 

where 

We have not derived further terms in the expansions since the algebra involved 
is very complicated. 

2.3. Discussion of the expansion 

Summarizing the results, we quote the equations for the shape of the streamlines 
and for the potential function: 

(34) 

where F ( X )  is definedin (30 ) ,  h , (X)  andg,(X) are given in (31), ( 3 2 ) .  Xis  equal to 
< which is related to the cone angle q9 by equation ( 1 3 )  and a conical stream sur- 
face is a line Y = const. and the two faces of the sheet are given by Y = 0 and 
Y = y. 
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The potential difference across the sheet is 

I 2n2 
F 

+- [ (4F2+ l)e2Fzei(2P2)-e4Faei(4P2)] e -3X+ ... 

= 4ntan$$(-logtan+$+6++)*+0($-3) 
= 27.44 -log$$+S+$)~[1+0($2)]. (35) 

The e-3x term has been obtained from the set of equations from which the func- 
tions h2(X) and g2(X)  were derived. 

By eliminating Y from equations (33) and (34) we can express r$ as a function 
of 8 and of X ,  i.e. of $. To do this, we introduce the notation 8,($) for the value 
of 6' which the inside face of the vortex sheet has for a given $.8,($) results from 
equation (33) for Y = 0. B,($) is a single-valued function in accordance with our 
assumption that conical stream surfaces g = const. are never tangential to the 
cones $ = const. 

The relation between the velocity field and the potential function is given by 
equations (21) to ( 2 3 ) .  We obtain: 

-'R = -logtan$$+& C2 
- 2 tan $$( -log tan $$ + 6 + +)+ [6,($) - 8 - 771 + O($21og $) 

= -log $$+ 6-  $( - log $$+a+ +)* [o,($) - 8 -TI + o($'lOg$), (36) 
3 = - 2 ~ 2 e - x - 2 ~ ( 2 ~ 2 - 1 )  - ~ - n  e-zx+ ... 
C2 (? 1 

= -$(-log+$+S+&) 

- $2( -log $11. + 6 )  ( -log $$ + 6+ &)$ [8,($) - 8 -4 + 0($3(10g $y), (37) 

3 = F + ( ~ F z -  1 )  (7 Y - n )  e-x C2 
+F3+2F+-)-(ZF3+2F-&) 7 E Y - n )  2 

6 P  

- (n2/F)  [ (4F2 + 1) eZF2 ei ( 2 P 2 )  - e4Fa ei (4F2)] e-2x + . . . 1 
= ( - log +$ + 6+ $14 + II.( - log +$ + 6 )  LO,($) - 8 - TI+ o(p( iog  9)". (38) 

In these formulae 8 varies between 8,($) - 2n and 8,($). 

terms of cylindrical polar co-ordinates x ,  r, 8. 
v, = vR cos $ - v@ sin $, 

To simplify the comparison with other work, we express the velocity field in 

r r 
(39) vz C2 _ -  - - log -+6-~( - log -+6++)*~s (~ ) -8 -n j+ . . . ,  2x X 2x 

v, = vB sin $ + v$ cos $, 
r r 

+- - log-+d][B,~)-8-nj+. . . .  r 

v,, 1 r 2 
_ -  c2 - ----r) 2 2  x [-log5+8+l] ( - l o g ~ + d + $ ) d ~ s ~ ) - 8 - ? r ] +  ..., (40) 

C2 22 )$ :[ 2x 
!!E = (-log-+&+$ r 
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The shape of the section of the vortex sheet by a plane x = const. is given by 

We note that the axial and the circumferential velocity components tend to 
infinity when we approach the centre of the spiral whilst the radial velocity 
component tends to zero. The first term in each of the equations for the velocity 
components is independent of 8. The velocity field arising from the first term of 
the asymptotic expansion is thus continuous across the sheet and axially sym- 
metric. 

It is interesting to compare the velocity field with that obtained for an axially 
symmetrical conical flow with continuously distributed vorticity. Hall ( 1961) 
and Ludwieg (1962) have investigated this flow for slender cones, i.e. for small 
values of r/x. Their solution reads 

v, = C,{ - log ( r /x )  + C,], 
v, = -+C,(?./z), 
v g  = Cl( -log ( r / x )  + + -t C,)*, 

where C, and C, are arbitrary constants. A comparison of this solution with 
equations (39) to (41) gives the noteworthy result that for our particular case the 
leading terms of the velocity components for a potential flow with the vorticity 
concentrated along a vortex sheet are the same as for an axisymmetric flow with 
distributed vorticity. 

We note that all the terms that have been found in the present asymptotic 
solution are determined by the choice of the two constants C and 6, just as the 
axially symmetric solution is determined by the two constants C, and C,. 

The present approach of term by term evaluation of the asymptotic expansion 
cannot provide information about its convergence. The expansion is certainly 
not valid when a stream surface g = const. (e.g. the vortex sheet) is tangential to 
a cone @ = const. and therefore the derivative go = l / O ,  vanishes. The trans- 
formation to the X ,  Y = g co-ordinates breaks down in this region. Experimental 
evidence (see e.g. Earnshaw 1961) and numerical solutions in Smith (1966a) 
suggest that the vortex sheet from the leading edge of a delta wing is tangential 
t o  such a circular cone at  certain points well away from the centre of the sheet. 
Whether infinitely many further points of tangency arise as the centre is ap- 
proached cannot be determined by either means. 

3. Time-dependent two-dimensional vortex sheets 
3.1. General equations 

We investigate the flow field near the centre of a vortex sheet in two-dimensional 
incompressible flow which varies with time. The sheet is a discontinuity of the 
velocity field which is carried along by the flow. For a free vortex sheet in in- 
viscid flow the vorticity of a fluid element does not change with time, therefore, 
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the sheet consists of the same particles at all times. This statement about the way 
in which the sheet moves with the fluid leads to the geometric boundary condition. 
The second boundary condition is again derived from the requirement that no 
pressure force must act on the sheet. For a time-dependent flow, Bernoulli’s 
equation for the static pressure contains the derivative of the potential function 
with respect to time. Therefore, the condition that the pressures on the two faces 
of the sheet be the same does not require that the magnitude of the velocities be 
the same. 

The velocity field must again satisfy the continuity equation. Let r and 6 be 
polar co-ordinates and t denote the time co-ordinate, then the continuity equa- 
tion reads 

a(rv,) 3% 
ar a6 +- = 0. (43) 

Since we consider only irrotational flow, a potential function @(r,  6, t )  exists, such 
that a@ 

1 a@ 
r a6 

v = -  
ar ’ 

v g = - - .  

(44) 

(45) 

Equation (43) becomes the Laplace equation 

1 1 
r r2 

Q r r + -  Q r + -  @‘eg = 0. 

It is possible to solve the problem by means of the theory of complex functions 
since @ is the real part of the complex function @ + iY where Y is the stream 
function. 

We intend to solve the problem by a method which is similar to the one used in 
6 2. Since the problem is concerned with particle paths, we introduce two func- 
tions Y,(r, 6, t )  and Y z ( r ,  6 ,  t)  which are constant along particle paths. If Y, and 
Y2 satisfy the equations 

r = ylrY20-Y10Yzr, (46) 

rvr = Y10Tzt- YltY28, (47) 

VO = ~lt~2r-Ylr~209 (48) 

then equation (43) is satisfied identically. Furthermore, 

i.e. Yl and Y Z  are constant along a particle path. The values of Y, and Y, can be 
taken as ‘labels’ which identify a particle. If we give to the particles forming the 
vortex sheet at  one time t = to one common label T2 = const. then the sheet is 
at  all times defined by Y2 = const. The inside face of the vortex sheet is denoted 
by Y z  = 0 and the outside by Y, = y. 

We consider here only self similar flow fields for which the streamline pattern 
at any time t is similar to the pattern at time t = to. This means that the velocity 
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components can be written as functions of r/h(t) and 8 with a scale factor which 
depends only on t. 

We introduce the variables r = t and r* = r/h(t) and choose Yz to be inde- 
pendent of r. Then it follows from equations (44) to (48) that Y,, Y, and @ are 
expressible in the form? 

Yl = h2@) f@*, (3, (49) 

y, = g(r*,8), (50 )  

0 = h(dh/dt) [&*, 8)  + +r*2]. (51) 

r* = f ,*go-fog ,* ,  ( 52 )  

r*$v = -2fgs, (53) 

W*)$@ = 2f9F (54) 

From equations (46), (49), (50) we obtain 

from equations (44), (47), (49) to ( 5 2 )  

and from equations (45), (48) to (51) 

To obtain simple relations for the boundary conditions we introduce new 
independent variables F ,  Y so that 

8 = O(F, Y ) ,  
r* = i; 

and 

We choose Y = g  

so that 

This change of independent variables is permissible if and only if go and 0, are 
neither zero nor infinite. As in $ 2 ,  we consider only this restricted problem. The 
differential equations ( 5 2 )  to (54) take the form: 

re, =fF, 

F&g+ = - 2 f [ l + P ( 8 , ) ” ,  

= -2fr0;.. 

= G(9) 

+f There is some freedom in the choice of Yl and Y2 and .therefore inf and g .  If 

then Y,  = h+- 
dGldg 

satisfies the equations (46) to (48). 
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We need not follow the paths of the individual particles therefore the value of 
TI, i.e. off, is of no direct interest. However, we do not eliminate the function f 
but retain it as an auxiliary function for solving the equations. 

The static pressure for constant total head can be determined from Bernoulli's 
equation: 

2 + + gvr"  + v;) = B(t). 
P at 

With the above equations this can be written as 

In the ( p ,  Y)-plane the flow field is represented by the semi-infinite strip 
0 6 Y 6 y, 0 < F ,  where the region near the centre of the core is represented 
by the neighbourhood of i; = 0. For two points on opposite faces of the vortex 
sheet the values of 8 differ by 27r; therefore the geometric boundary condition 

For the second boundary condition (that the pressure is continuous across the 
sheet), we obtain from equation (58) the relation 

3.2. An asymptotic expansion for the velocity jieEd 

We restrict ourselves to time laws of the form 

h( t )  = I ~ t l ' ~ ,  
where k and m are constants and 

An asymptotic solution of equations (55) to (57), (59), (60) has been found by 
expanding the functions O(?, Y ) ,  Fal-WL)#(F, Y), F - 2 f ( F ,  Y) into power series of 
R = n-Fm/C where the coefficients are functions of Y only and C is an arbitrary 
constant. 

For 0 < m < 2 and m + 1, the first terms read 

R+ ..., (62) 1 e i  Y 4-m2 Y (2-m)(4-22m-m2) 

7~ mR 2 y + [ x ( 2 y - 1 )  3m2 
- - ___  - 
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For the special case m = 1, the functions e(T, Y ) ,  $ ( F ,  Y)+C210gR and 
f(7, Y )  were expanded in power series with respect to R = Tn-/C. The result 
reads : 

e 
- = c, + ( 1 1 ~ )  -A + ( ~ A z +  R -  ( + 4 3  - +A) ~2 
77 

c2 

Y 
Y 

with A = 2--1, 

C, and C2 are arbitrary constants. 
The vortex sheet is thus given by 

C 1 1 7 7 2  1 
r 6 C  C 

0, = 7+~(cl- i ) + - - ~ - ( g + 4 + + 4 q  - - , ~ 3 + 0 ( ~ 5 )  

and the potential difference across the sheet by 

For the velocity components we obtain? the relations: 

7 T -  7J2 - 
= - A  - r 2 - - ( A 2 + 2 ) - r 3 + . . . ,  

C c2 

dh F o g $ ;  
ve = l+(r~i;)2 

It is of course possible to use equation (64) to express A as a function of 8 - B,(R) 
and R and then to write v, and vo as functions of F and 8. 

We have stated before that the time-dependent problem for m = 1 is equiva- 
lent to the conical problem treated by slender theory; we have only to substitute 
r/(lcx) for F = r / ( k t )  (see e.g. Mangler & Smith 1959; Kiichemann & Weber 1965). 

Maskell has also examined the asymptotic behaviour of the conical leading- 
edge vortex sheet by slender-body theory and given some results at  the 
I.U.T.A.M. Symposium on Vortex Motions a t  Ann Arbor in July 1964 (see Smith 

t I f  the centre of the vortex core were not at  the origin of the co-ordinate system then 
we would add the velocity components produced by a uniform flow which is parallel to 
the line joining the centre of the vortex core and the origin of the co-ordinate system. 
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19663). He has derived the leading term for the derivatives of A@ and of 
r,/x with respect to 8 where r, gives the distance of a point on the sheet from the 
centre of the sheet. The result for A 0  is the same as given in this paper. For r, 
his result reads : 

= - 5 (1 + q1 sin 28 -pl cos 20) + . . ., 
dB 82 

where Ic,, q1 and p 1  are constants. The important difference from the solution of 
the present report is the appearance of the sinusoidal terms. We have excluded 
such a type of expansion when we subjected the coefficients in the expansions to 
certain restrictions. 

When introducing a more general type of expansion, we have also tried to avoid 
the restriction implied in the assumption 8, + 0 ,  + 00 by choosing as independent 
variables [, 7, e.g. the functions $(r, 8) and g(r, 8). It is not yet known whether it 
is possible to solve the resulting differential equations for the coefficients in 
closed form. 

A different approach to the asymptotic solution for a slender core was made by 
Mangler & Sells (1967) who obtained (by conformal mapping) a solution with more 
degrees of freedom. The leading terms agree with the present cases. The free 
parameters cannot be determined locally but are used to fit the core to the ex- 
ternal flow past the wing and the outer turns of the vortex sheets. 

4. Discussion of the results 
It is of interest to compare the results derived with and without the slenderness 

assumption. In order to compare the differential equations, we introduce the 
variable X = -log? into (55) to (57). Equation (55) reads then 

f ly  = - e 2 X f x  (70)  

and equations (56) and (57) become identical with (18) and (19). The important 
difference between equation (70)  and (17 )  is the factor $ on the left-hand side, 
since $ tends to infinity for X -+ co. 

The geometric boundary conditions equations (20) and (59) are the same. In  
order to compare the pressure conditions, we introduce for conical flow the arc 
length elements ds and da defined by 

(as), = (dB)2 + BS(da)2, 

= (all.), + (sin $d8)2. 

Along a streamline Y = const. we have 
1 

cosh X du = ~ (1 + (OX)2)*dX. 

We can therefore write the pressure condition of the conical problem, equation 
(24), in the form 

Introducing the arc length d a  along the cross section of the sheet in a plane 
x = const., for which da = a?( 1 + (r8;)2)+, 
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we may write the pressure condition for slender theory, equation (60) with 
h = t ,  in the form 

We note that the difference between equations (71) and (72) is a factor # in the 
first term. 

We note that in slender theory the circumferential velocity, equation (69), 
tends towards a finite value whilst the circumferential velocity derived without 
the slenderness assumption, equation (41), has a logarithmic infinity at the centre 
of the core. 

Since the flow considered in slender theory is a two-dimensional flow free of 
sources, the mean value of the radial velocity taken along a circle r/x  = const. 
is zero. For conical flow, the mean value of the radial velocity taken along a circle 
T = const. in a plane x = const. need not vanish [according to equation (40) it 
is - iCz(r /x )  + O ( ( ~ / X ) ~ ) ] ,  since the mass entering the circle can escape in the 
x-direction. To obtain an approximate solution of the conical problem, Roy (1966) 
has suggested introducing a fictitious source distribution in the ' pseudo-trans- 
verse ' (i.e. pseudo-two-dimensional) flow in a plane x = const. in order to account 
for this three-dimensional effect. 

According to equation (51) the potential function (I, in slender conical theory is 
related to 4 by the equation . .  

( I , = x [ # ( ; , 0 ) + ; ( 3 2 ]  

The streamwise velocity component v, is therefore (to a first order) equal to 9. 
We note from equation (65) that the velocity component parallel to the axis of 
the vortex core calculated by slender theory tends to infinity in the same way as 
when it is calculated without the assumption of slenderness, equation (39). 

For the vorticity distribution along the sheet y = d ( A # ( / d r  we obtain for the 
slender solution' 

and for the conical solution 

X 

The first term of the slender theory was derived in Mangler & Smith (1959) by 
a somewhat incomplete argument. 

If we compare the derivative 

from equation (66), with the value in equation (42), we note that for the conical 
sheet )d#,/d(r/x) 1 increases less steeply with decreasing r / x  than for the slender 
sheet, i.e. the spiral is not quite so tightly wound. The slender theory result 
agrees again with that of Mangler & Smith (1959). 
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Summarizing, we can say that the introduction of the slenderness assumption 
has not changed the main character of the asymptotic behaviour near the centre 
of the vortex sheet. Both theories produce tightly wound spiral sheets for which 
the vorticity distribution tends to zero a t  the centre. 

FIGURE 2. Notation for double branched vortex core. 

Both theories give logarithmically infinite velocities at  the centre. The occur- 
rence of these infinite velocities raises of course some doubts about the relevance 
of results for incompressible flow. However, for the flow past delta wings at low 
speed we can expect from the work of Brown (1965) that compressibility effects 
are important only for a very narrow region of the core. Brown has investigated 
the compressible axially symmetric conical flow with distributed vorticity and 
shown that for small values of the Mach number a t  the edge of the core the flow 
can be treated as incompressible except for a narrow subcore. In  a similar in- 
vestigation about the effects of viscosity Hall (1961) has shown that the flow 
can be approximated by an inviscid flow except for a narrow subcore. A compari- 
son with experimental results (see e.g. Kuchemann & Weber (1965)) shows that 
an inviscid incompressible theory can predict some of the important features of 
the flow. 

5. Double branched vortex cores 
With the method derived for a time-dependent vortex sheet, we can also de- 

termine the flow field past two (or more) similar vortex sheets which have a com- 
mon centre and a common time law h( t ) .  Stream functions Yl and Y2 can again 
be introduced such that both sheets are represented by curves 

Y,(r/h(t), 6) = g(r*, 6) = const. 
13 Fluid Mech. 30 
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We assume again that go does not vanish, so that between the sheets, g is for 
constant r* a continuous monotonically varying function. We may choose 
Y = g = 0 to represent the inside face and Y = y the outside face of one sheet. 
For the position of the second sheet any value of Y in the interval 0 < Y < y 
can be chosen. We select the particular case of a symmetrical two-branched sheet 
(see figure 2 )  by choosing Y = +y and a constant value for the leading term in 
8,. We denote by the suffix I the functions for 0 < Y < &y and by the suffix I1 
the functions for +y < Y < y. The differential equations are the same as before 
and with the time law given by equation (61) the boundary conditions read: 

For 0 < m < 2 and m + 1, the first terms of an asymptotic solution, come- 
sponding to equations (62)  and (63)  read: 

( 2  - m) (4 - 2m- m2) ( 2  - m) ( 6  + 7m - 7m2 - 2m3) -K + 3m2 3m3 

( 2  - m)2 (6 + 2m - m2) (2 - m)3(2 + m) ]R+ ..., (73)  +K2- -K3 ______ 
2m2 2m3 

( 2  - m) (6-  2m - 4m2 +m3) 
3m2 

K 
( l -m) (Z- rn )  1 

+ 3m 273-2 

]R2+*..), (74) 
( 2  - m)2 ( 4  + m - m2) K3 ( 2  - m)3 ( 2  + m) +KZ-------- - 

2m 2m2 

where the upper sign applies in the interval 0 < Y < &y and the lower sign in the 
interval &y < Y < y. The constant K determines the potential difference across 
the second sheet. If we consider only the terms of lowest order, then we note that 
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the ratio between the potential differences for the second sheet and the first sheet 
is K/(1 -K) .  Equations (73) and (74) are applicable in the case m = 1, except 
that the term ?2(1-nz)/2(m- 1) in equation (74) is replaced by -log R. 

6. Conclusions 
Some asymptotic solutions for incompressible flow near the centre of a rolled- 

up vortex sheet have been obtained for conical steady flow and for time-depend- 
ent two-dimensional flow. Once the rather special form of the expansions is de- 
cided, the solutions are unique and the number of free constants is very small. 
In both cases the shape of the sheet is that of a tightly wound spiral. For conical 
flow the axial and circumferential velocity components tend to infinity in the 
same way as for axially symmetrical rotational conical flow (Hall 1961). 

The results have been used to show the differences between the solutions 
derived with and without the assumptions of slender theory. The circumferen- 
tial velocity tends, with decreasing distance from the axis, logarithmically to 
infinity for the conical solution and to a finite value for the slender solution. The 
velocity component normal to a circle around the centre of the spiral has for the 
conical solution a finite mean value which tends to zero with the distance from 
the centre; for the slender solution this mean value is always zero. The axial 
velocity component tends to infinity for both solutions. 

Comparisons of an asymptotic core solution based on inviscid flow with experi- 
ments made in a real flow are very difficult. Kiichemann & Weber (1965) gave 
some examples which showed that the tightly rolled spiral and the large axial 
velocity components predicted by the calculation seem to be consistent with 
experiments. 

This paper is Crown Copyright, reproduced with the permission of The Con- 
troller, Her Majesty’s Stationery Office. 
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